Negative large deviations of the front velocity of N-particle branching Brownian motion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2FCZ______%3A_____%2F24%3AN0000088" target="_blank" >RIV/CZ______:_____/24:N0000088 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevE.110.064111" target="_blank" >https://doi.org/10.1103/PhysRevE.110.064111</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.110.064111" target="_blank" >10.1103/PhysRevE.110.064111</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Negative large deviations of the front velocity of N-particle branching Brownian motion
Popis výsledku v původním jazyce
We study negative large deviations of the long-time empirical front velocity of the center of mass of the one-sided N-BBM (N-particle branching Brownian motion) system in one dimension. Employing the macroscopic fluctuation theory, we study the probability that c is smaller than the limiting front velocity c_0, predicted by the deterministic theory, or even becomes negative. To this end we determine the optimal path of the system, conditioned on the specified c. We show that for c_0-c << c_0 the properly defined rate function s(c), coincides, up to a non-universal numerical factor, with the universal rate functions for front models belonging to the Fisher-Kolmogorov-Petrovsky-Piscounov universality class. For sufficiently large negative values of c, s(c) approaches a simple bound, obtained under the assumption that the branching is completely suppressed during the whole time. Remarkably, for all c < or = c_*, where c_*<0 is a critical value that we find numerically, the rate function s(c) is equal to the simple bound. At the critical point c=c_* the character of the optimal path changes, and the rate function exhibits a dynamical phase transition of second order.
Název v anglickém jazyce
Negative large deviations of the front velocity of N-particle branching Brownian motion
Popis výsledku anglicky
We study negative large deviations of the long-time empirical front velocity of the center of mass of the one-sided N-BBM (N-particle branching Brownian motion) system in one dimension. Employing the macroscopic fluctuation theory, we study the probability that c is smaller than the limiting front velocity c_0, predicted by the deterministic theory, or even becomes negative. To this end we determine the optimal path of the system, conditioned on the specified c. We show that for c_0-c << c_0 the properly defined rate function s(c), coincides, up to a non-universal numerical factor, with the universal rate functions for front models belonging to the Fisher-Kolmogorov-Petrovsky-Piscounov universality class. For sufficiently large negative values of c, s(c) approaches a simple bound, obtained under the assumption that the branching is completely suppressed during the whole time. Remarkably, for all c < or = c_*, where c_*<0 is a critical value that we find numerically, the rate function s(c) is equal to the simple bound. At the critical point c=c_* the character of the optimal path changes, and the rate function exhibits a dynamical phase transition of second order.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review E
ISSN
2470-0045
e-ISSN
2470-0053
Svazek periodika
110
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
64111
Kód UT WoS článku
001380244100002
EID výsledku v databázi Scopus
2-s2.0-85211442941